

Apache OFBiz Development
The Beginner's Tutorial

Jonathon Wong
Rupert Howell

Chapter No. 10
"The Service Engine"

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

 In this package, you will find:
A Biography of the authors of the book

A preview chapter from the book, Chapter NO.10 "The Service Engine"

A synopsis of the book’s content

Information on where to buy this book

About the Authors
Jonathan Wong Jong Hann is an avid puzzle solver. He is constantly in search of
new problems to take apart. He has dabbled in Rubik's Cubes, maze navigation
algorithms, and various other logical and mechanical puzzles.

He had taken apart OFBiz within a month for a client who wanted to evaluate it. Having
mapped out the architectural structure of OFBiz, he also embarked on documenting the
functional and ERP-specific aspects of OFBiz. Within the following six months, he had
completed three small-scale projects with OFBiz. He is currently using OFBiz in almost
every new project, leveraging OFBiz's advantage for rapid prototyping and development.

He first delved into Java some 10 years ago. He has since specialized in clean
programming structures, design patterns, and parallel computing. Since then, he also
picked up the hobby of reverse engineering various open source software to equip his
employers and himself with new technologies. Jonathon has also worked for clients who
needed to take apart legacy systems to make corrections.

I would like to thank James Lumsden, the Acquisition Editor at Packt
Publishing, for his help in keeping this book within a coherent scope
and on schedule. I would also like to thank my co-author and reviewers
for completing and rounding off this book when my hand injury and
work schedule overwhelmed me.

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

Rupert Howell, while developing Java applications for the UK's Office for National
Statistics, stumbled upon Open For Business and has been working with the framework
ever since. Since early 2003, Rupert has been a consultant to some of the UK's largest
OFBiz implementations and has helped some major retailers successfully migrate their
entire ERP systems to OFBiz.

Rupert holds a Master's degree in Mechanical Engineering and is a Director of Provolve
Ltd, a company specializing in OFBiz-based solutions. For more information see the
Provolve website at www.provolve.com.

I would like to thank the reviewers for giving up their precious
time—your input was invaluable.

For Sophie—who I love with all my heart and who never fails to make
me happy.

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

 Apache OFBiz Development
The Beginner's Tutorial
Apache Open For Business or OFBiz as it is more commonly known, is an open source
framework designed to facilitate the building of Enterprise Resource Planning (ERP)
software. ERP is a general name for any system which attempts to integrate all business
processes and underlying data into one single system. Indeed the OFBiz framework not
only facilitates the building of your own custom software, but also comes packaged with
many tools you would expect from an ERP system, and much more. The extent to which
you wish to use these applications is entirely up to you and the needs of your business.
Some businesses choose to use some or all of these components virtually straight out of
the box. Others may spend time and money customizing these components or building
new ones to suit their own needs and their own unique business processes. Since OFBiz
is licensed under the Apache License Version 2.0, organizations can use, customize,
extend, modify, repackage, and even resell OFBiz completely free of charge.

OFBiz is aimed primarily at ecommerce businesses, giving easily customizable tools such
as a full Warehouse Management System (WMS), an accounting system and full order
and product management systems. It even has a full front end, customer facing website
and shopping cart with tools and features comparable to multimillion dollar websites such
as Amazon, not to mention its own set of self maintenance and administrative tools. Out
of the box, OFBiz is a multi-currency system working just as well with British Pounds,
Euros, or any other currency as it does with US Dollars. It is multilingual and is able to
display text in different languages depending on where in the world the user or customer
is looking. It is so versatile it is not even tied to one database, and fully supports most
well known databases.

The main reason for its versatility and size has been its open source model. OFBiz is truly
a collaborative effort with a small number of committers who have volunteered to
develop and maintain a code base supplied by both themselves and a growing
community. Although documentation on the tools is often thin on the ground (this is
mainly because of the speed at which the project and components evolve), there are free
and active mailing lists set up that will become an invaluable learning tool and source of
information as you progress with OFBiz. The OFBiz project employs the use of the well
known JIRA application (a bug and issue tracking and project management tool – which
is using the OFBiz Entity Engine, a major part of the framework). This allows developers
and users to tell the community about any bugs they find in the software or request new
features that they would find handy but perhaps don't have the resources to develop for
themselves. Who knows? Once you have read this book you may even want to have a go
at developing an outstanding issue or fixing a bug for the project yourself!

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

What This Book Covers
Chapter 1, using a Windows machine, guides us through downloading and installing the
necessary software we need to obtain and run the OFBiz framework. We are shown how
to create an Eclipse project and once running we are shown a few of the components as
we place an order on the applications customer facing website and fulfill the order using
the back office's Order Manager component.

In Chapter 2 we learn the structure of OFBiz. We are introduced to the concepts of
the framework, applications, and hot-deploy directories. We perform our first
customization on an existing OFBiz component and finally create the structure of our
own bespoke application.

In Chapter 3 we take a look at how the output to the screen is constructed using the
screen widgets. We start by creating a simple screen in our learning component, showing
a basic output. By the end of the chapter we have learned how to create complex screens,
made up of different sections.

In Chapter 4 we study form widgets. We learn how they are used within screen widgets
and can save us development time and effort by quickly producing XHTML forms so we
can input information to the application.

In Chapter 5 we complete our investigation into the presentation layer of OFBiz by
learning how to use Menu-Widgets to navigate around our component. We also take
more of a look at how FreeMarker can help us display more complicated screens.

In Chapter 6 we re-visit the Control, learning more about how OFBiz makes use of the
Front Controller pattern to configure the flow through our component in just one place.
We learn how OFBiz handles different types of requests and we are introduced to the
concept of security. By the end of the chapter, we have added "log in" functionality to our
bespoke application and have seen how easy it is to force a request to be "secure".

In Chapter 7 we move on to the concepts of the Entity Engine and learn how OFBiz
employs the use of the Delegation Pattern to give us easy access to methods to persist
data. We learn how OFBiz creates the database structure, adding fields, tables, constraints
and indexes from definitions in XML files. We see how, by using View Entities, we can
perform joins across tables allowing us to create complex queries. We are also introduced
to the Webtools administration component of OFBiz and discover how to access the raw
data through these screens.

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

 In Chapter 8 we are led through a series of examples designed to showcase data lookup
and persistence techniques. We learn how to use the GenericDelegator's methods to
lookup and manipulate the underlying data. We discover how using the Entity Engine
Cache can massively improve performance by cutting down the number of database
queries and learn how complex queries can be created on the fl y by using Dynamic View
Entity. Finally we learn how to use the EntityListIterator to efficiently paginate through
large record sets.

In Chapter 9 we take a closer look at Java events by learning a number of techniques
vital to programming the flow of the application. We also take a look at how we
can assign users permissions and how these permissions are checked within the
Java methods.

In Chapter 10 we next see another type of event and a very important one—the services.
We learn about the advantages of the Service Engine and how it works, learning how to
define and write services in Java. We learn the difference between invoking these
services synchronously and asynchronously and how services can be scheduled using the
Job Scheduler. Finally we learn how to trigger these services using ECAs (Event
Condition Actions).

In Chapter 11 we move on to study complex permissions, learning how to assign users
granular permissions, and how simply these permissions can be checked from our
services. We learn by example how to restrict users from viewing or inputting data
depending on access rights whilst building up our bespoke application.

In Chapter 12 we learn about the OFBiz Mini-Language. We see how we can
write simple services and events in Minilang, and we learn when it should be
ideally used. We see its versatility and see how widespread its concepts are used
throughout the framework.

In Chapter 13 we come towards the end of learning about the framework, we see how
easy it is to change the look and feel of the component and study the structure of the
existing screens. The chapter moves on to some more advanced FreeMarker techniques
that are commonly used throughout all of the components. Finally using the production of
a PDF as an example we see how to output different formats.

In Chapter 14 we learn some real world developing techniques, including how to
debug through the different parts and languages found within the framework. We
see how to connect a remote debugger to the application and step through the
Java code line by line using the Eclipse IDE. We next learn the concepts behind getting
the latest bug fixes and features and merging these into our project using Windows tools
enabling us to successfully work with the latest and greatest version on OFBiz. Finally
we see learn how to run OFBiz behind the Apache HTTP Server allowing us to create a
scalable architecture.

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

The Service Engine
In this chapter, we will be exploring the Service Engine. Services in OFBiz operate in
a Service Oriented Architecture (SOA). These services not only have the ability to
invoke other services internally, but can also be 'opened up' and invoked by remote
applications using, amongst other methods, the widely adopted messaging
protocol SOAP.

 Besides serving as a platform for interoperability, OFBiz services also offer us
additional capability to organize our code. The traditional organizational strategies
in object-oriented Java were a great improvement over the procedural paradigm.
Wrapping both methods and variables together into objects to form a powerful
"behavioral model" for code organization (where object's methods and variables
defi ne their behavior). Similarly with OFBiz services we are able to bundle groups
of behavior together to form a coherent "service". We can say that OFBiz services,
in terms of code or software organization, operate at a higher level than Java object-
oriented organizational strategies.

In this chapter, we will be looking at:

Defi ning and creating a Java service
Service parameters
Special unchecked (unmatched) IN/OUT parameters
Security-related programming
Calling services from code (using dispatcher).
IN/OUT parameter mismatch when calling services
Sending feedback; standard return codes success, error and fail
Implementing Service Interfaces
Synchronous and asynchronous services
Using the Service Engine tools
ECAs: Event Condition Actions

•
•
•
•
•
•
•
•
•
•
•

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

The Service Engine

[288]

Defining a Service
 We fi rst need to defi ne a service. Our fi rst service will be named
learningFirstService.

In the folder ${component:learning}, create a new folder called servicedef. In
that folder, create a new fi le called services.xml and enter into it this:

<?xml version="1.0" encoding="UTF-8" ?>

<services xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://www.ofbiz.org/dtds/services.xsd">
 <description>Learning Component Services</description>

 <service name="learningFirstService" engine="java"
 location="org.ofbiz.learning.learning.LearningServices"
 invoke="learningFirstService">
 <description>Our First Service</description>
 <attribute name="firstName" type="String" mode="IN"
 optional="true"/>
 <attribute name="lastName" type="String" mode="IN"
 optional="true"/>
 </service>
</services>

In the fi le ${component:learning}\ofbiz-component.xml, add after the last
<entity-resource> element this:

<service-resource type="model" loader="main"
 location="servicedef/services.xml"/>

That tells our component learning to look for service defi nitions in the fi le
${component:learning}\servicedef\services.xml.

It is important to note that all service defi nitions are loaded at startup;
therefore any changes to any of the service defi nition fi les will require
a restart!

Creating the Java Code for the Service
 In the package org.ofbiz.learning.learning, create a new class called
LearningServices with one static method learningFirstService:

package org.ofbiz.learning.learning;

import java.util.Map;

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

Chapter 10

[289]

import org.ofbiz.service.DispatchContext;
import org.ofbiz.service.ServiceUtil;

public class LearningServices {

 public static final String module =
 LearningServices.class.getName();

 public static Map learningFirstService(DispatchContext dctx,
 Map context){

 Map resultMap = ServiceUtil.returnSuccess("You have called on
 service 'learningFirstService' successfully!");
 return resultMap;
 }

}

Services must return a map. This map must contain at least one entry. This entry
must have the key responseMessage (see org.ofbiz.service.ModelService.
RESPONSE_MESSAGE), having a value of one of the following:

success or ModelService.RESPOND_SUCCESS
error or ModelService.RESPOND_ERROR
fail or ModelService.RESPOND_FAIL

 By using ServiceUtil.returnSuccess() to construct the minimal return map, we
do not need to bother adding the responseMessage key and value pair.

Another entry that is often used is that with the key successMessage
(ModelService.SUCCESS_MESSAGE). By doing ServiceUtil.returnSuccess("Some
message"), we will get a return map with entry successMessage of value "Some
message". Again, ServiceUtil insulates us from having to learn the convention
in key names.

Testing Our First Service
 Stop OFBiz, recompile our learning component and restart OFBiz so that the
modifi ed ofbiz-component.xml and the new services.xml can be loaded.

In ${component:learning}\widget\learning\LearningScreens.xml, insert a
new Screen Widget:

<screen name="TestFirstService">
 <section>
 <widgets>
 <section>
 <condition><if-empty field-name="formTarget"/></condition>

•

•

•

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

The Service Engine

[290]

 <actions>
 <set field="formTarget" value="TestFirstService"/>
 <set field="title" value="Testing Our First Service"/>
 </actions>
 <widgets/>
 </section>
 <decorator-screen name="main-decorator"
 location="${parameters.mainDecoratorLocation}">
 <decorator-section name="body">
 <include-form name="TestingServices"
 location="component://learning/widget/learning/
 LearningForms.xml"/>
<label text="Full Name: ${parameters.fullName}"/>
 </decorator-section>
 </decorator-screen>
 </widgets>
 </section>
</screen>

In the fi le ${component:learning}\widget\learning\LearningForms.xml, insert
a new Form Widget:

<form name="TestingServices" type="single" target="${formTarget}">
 <field name="firstName"><text/></field>
 <field name="lastName"><text/></field>
 <field name="planetId"><text/></field>
 <field name="submit"><submit/></field>
</form>

Notice how the formTarget fi eld is being set in the screen and used in the form.
For now don't worry about the Full Name label we are setting from the screen. Our
service will eventually set that.

In the fi le ${webapp:learning}\WEB-INF\controller.xml, insert a new
request map:

<request-map uri="TestFirstService">
 <event type="service" invoke="learningFirstService"/>
 <response name="success" type="view" value="TestFirstService"/>
</request-map>

The control servlet currently has no way of knowing how to handle an event of type
service, so in controller.xml we must add a new handler element immediately
under the other <handler> elements:

 <handler name="service" type="request"
 class="org.ofbiz.webapp.event.ServiceEventHandler"/>
 <handler name="service-multi" type="request"
 class="org.ofbiz.webapp.event.ServiceMultiEventHandler"/>

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

Chapter 10

[291]

We will cover service-multi services later. Finally add a new view map:

<view-map name="TestFirstService" type="screen"
 page="component://learning/widget/learning/
 LearningScreens.xml#TestFirstService"/>

Fire to webapp learning an http OFBiz request TestFirstService, and see that we
have successfully invoked our fi rst service:

Service Parameters
J ust like Java methods, OFBiz services can have input and output parameters and
just like Java methods, the parameter types must be declared.

Input Parameters (IN)
O ur fi rst service is defi ned with two parameters:

<attribute name="firstName" type="String" mode="IN" optional="true"/>
<attribute name="lastName" type="String" mode="IN" optional="true"/>

Any parameters sent to the service by the end-user as form parameters, but not in
the services list of declared input parameters, will be dropped. Other parameters
are converted to a Map by the framework and passed into our static method as the
second parameter.

Add a new method handleInputParamaters to our LearningServices class.

 public static Map handleParameters(DispatchContext dctx, Map
 context){

 String firstName = (String)context.get("firstName");
 String lastName = (String)context.get("lastName");
 String planetId= (String)context.get("planetId");

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

The Service Engine

[292]

 String message = "firstName: " + firstName + "
";
 message = message + "lastName: " + lastName + "
";
 message = message + "planetId: " + planetId;

 Map resultMap = ServiceUtil.returnSuccess(message);
 return resultMap;
 }

We can now make our service defi nition invoke this method instead of the
learningFirstService method by opening our services.xml fi le and replacing:

 <service name="learningFirstService" engine="java"
 location="org.ofbiz.learning.learning.LearningServices"
 invoke="learningFirstService">

with:

 <service name="learningFirstService" engine="java"
 location="org.ofbiz.learning.learning.LearningServices"
 invoke="handleParameters">

Once again shutdown, recompile, and restart OFBiz.

E nter for fi elds First Name, Last Name, and Planet Id values Some, Name, and
Earth, respectively. Submit and notice that only the fi rst two parameters went
through to the service. Parameter planetId was dropped silently as it was not
declared in the service defi nition.

Modify the service learningFirstService in the fi le ${component:learning}\
servicedef\services.xml, and add below the second parameter a third one
like this:

<attribute name="planetId" type="String" mode="IN" optional="true"/>

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

Chapter 10

[293]

Restart OFBiz and submit the same values for the three form fi elds, and see all three
parameters go through to the service.

Output Parameters (OUT)
Jus t like Java methods have return values (although Java methods can have only one
typed return value), services can be declared with output parameters. When invoked
as events from the controller, parameters will be silently dropped if they are not
declared in our service's defi nition. Add this to our service defi nition:

<attribute name="fullName" type="String" mode="OUT" optional="true"/>

And in the method handleParameters in org.ofbiz.learning.learning.
LearningServices replace:

Map resultMap = ServiceUtil.returnSuccess(message);
return resultMap;

with

Map resultMap = ServiceUtil.returnSuccess(message);
resultMap.put("fullName", firstName + " " + lastName);
return resultMap;

We have now added the fullName parameter to the resultMap. To see this in action
we need to create a new screen widget in LearningScreens.xml:

<screen name="TestFirstServiceOutput">
 <section>
 <actions><set field="formTarget"
 value="TestFirstServiceOutput"/></actions>

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

The Service Engine

[294]

 <widgets>
 <include-screen name="TestFirstService"/>
 </widgets>
 </section>
</screen>

Add the request-map to the controller.xml fi le:

<request-map uri="TestFirstServiceOutput">
 <event type="service" invoke="learningFirstService"/>
 <response name="success" type="view"
 value="TestFirstServiceOutput"/>
</request-map>

and fi nally the view-map:

<view-map name="TestFirstServiceOutput" type="screen"
 page="component://learning/widget/learning/
 LearningScreens.xml#TestFirstServiceOutput"/>

Stop OFBiz, rebuild our Learning Component and restart, fi re an OFBiz http request
TestFirstServiceOutput to webapp learning. Submit your fi rst and last names
and planet and notice that now the fullName parameter has been populated.

Two Way Parameters (INOUT)
A se rvice may change the value of an input parameter and we may need a calling
service to be aware of this change. To save us declaring the same parameter twice,
with a mode for IN and a mode for OUT, we may use the mode INOUT.

<attribute name="fullName" type="String" mode="INOUT"
 optional="true"/>

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

Chapter 10

[295]

Special Unchecked Parameters
Ther e are a few special cases where IN/OUT parameters can exist even though the
service defi nition does not declare them. They are:

responseMessage

errorMessage

errorMessageList

successMessage

successMessageList

userLogin

locale

The parameters responseMessage, errorMessage, errorMessageList,
successMessage and successMessageList are necessary placeholders for feedback
messages. They must be allowed through all validation checks.

The parameter userLogin is often required for authentication and permissions checks.

The parameter locale is needed just about everywhere in OFBiz. For locale-
specifi city in certain operations like retrieving template feedback messages, or like
formatting numbers and currency fi gures.

Opt ional and Compulsory Parameters
The Service Engine checks the validity of the input and the output to ensure that
what is coming into the service and is leaving adheres to the service defi nition. If
the optional attribute is set to false and an expected parameter is missing, then
the validation will fail and the service will return an error. This transaction will
now be marked for rollback, meaning any changes to the database made during this
transaction will never be committed. This could include any changes made to the
database by calling services. For example:

<attribute name="fullName" type="String" mode="INOUT"
 optional="false"/>

Here the parameter fullName must be passed into the service and the service must
also add this parameter to the resultMap and pass it out or validation will fail and
an error will be thrown.

•

•

•

•

•

•

•

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

The Service Engine

[296]

Try changing all of the optional fl ags on our newly created service to false. After a
restart we should see:

The DispatchContext
We ha ve already seen how parameters are passed into our Java method as a Map.
Just as the userLogin object of type GenericValue and the locale object of type
Locale were added as attributes to the request for the Java events, both are now
automatically added to this context map when the service is invoked in this way.

The fi rst parameter, the DispatchContext, contains the remaining tools we need to
access the database, or to invoke other services.

From our Java code we can get access to the following handy objects like this:

GenericValue userLogin = (GenericValue)context.get("userLogin");

Locale locale = (Locale)context.get("locale");

GenericDelegator delegator = dctx.getDelegator();

LocalDispatcher dispatcher = dctx.getDelegator();

Security security = dctx.getSecurity();

For a full list of objects that are available from the DispatchContext, take a look
through the code in org.ofbiz.service.DispatchContext.

The service engine is in no way reliant on there being HTTPServletRequest or
HTTPServletResponse objects available. Because of this we are able to invoke
services outside of the web environment and they can be invoked remotely or
scheduled to run "offl ine".

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

Chapter 10

[297]

Service Security and Access Control
Secur ity-related programming in services is exactly like that in events.

In the class org.ofbiz.learning.learning.LearningServices, create a new static
method serviceWithAuth:

 public static Map serviceWithAuth(DispatchContext dctx, Map
 context){
 Security security = dctx.getSecurity();
 Map resultMap = null;
 if (context.get("userLogin") == null ||
 !security.hasPermission("LEARN_VIEW",
 (GenericValue)context.get("userLogin"))) {
 resultMap = ServiceUtil.returnError("You have no access
 here. You're not welcome!");
 }
 else {
 resultMap = ServiceUtil.returnSuccess("Welcome! You have
access!");
 }
 return resultMap;
 }

Ensure that the correct imports have been added to the class:

import java.util.Map;
import org.ofbiz.entity.GenericValue;
import org.ofbiz.security.Security;

In the fi le ${component:learning}\servicedef\services.xml, add a new
service defi nition:

 <service name="learningServiceWithAuth" engine="java"
 location="org.ofbiz.learning.learning.LearningServices"
 invoke="serviceWithAuth">
 <description>Service with some security-related
 codes</description>
 </service>

In the fi le ${webapp:learning}\WEB-INF\controller.xml, add a new request map:

<request-map uri="TestServiceWithAuth">
 <security auth="true" https="true"/>
 <event type="service" invoke="learningServiceWithAuth"/>
 <response name="success" type="view" value="SimplestScreen"/>
 <response name="error" type="view" value="login"/>
</request-map>

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

The Service Engine

[298]

Rebuild and restart and then fi re to webapp learning an http OFBiz request
TestServiceWithAuth, login with username allowed password ofbiz, and see the
welcome message displayed:

Logging in with username denied password zibfo will show an error message.
Thanks to the request-map's response element named error having a value of
login, we are returned back to the login screen:

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

Chapter 10

[299]

Calling Services from Java Code
So far, we have explored services invoked as events from the controller (example
<event type="service" invoke="learningFirstService"/>). We now look at
calling services explicitly from code.

To invoke services from code, we use the dispatcher object, which is an object of
type org.ofbiz.service.ServiceDispatcher. Since this is obtainable from the
DispatchContext we can invoke services from other services.

To demonstrate this we are going to create one simple service that calls another.

In our services.xml fi le in ${component:learning}\servicedef add two new
service defi nitions:

 <service name="learningCallingServiceOne" engine="java"
 location="org.ofbiz.learning.learning.LearningServices"
 invoke="callingServiceOne">

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

The Service Engine

[300]

 <description>First Service Called From The Controller
 </description>
 <attribute name="firstName" type="String" mode="IN"
 optional="false"/>
 <attribute name="lastName" type="String" mode="IN"
 optional="false"/>
 <attribute name="planetId" type="String" mode="IN"
 optional="false"/>
 <attribute name="fullName" type="String" mode="OUT"
 optional="true"/>
 </service>
 <service name="learningCallingServiceTwo" engine="java"
 location="org.ofbiz.learning.learning.LearningServices"
 invoke="callingServiceTwo">
 <description>Second Service Called From Service One
 </description>
 <attribute name="planetId" type="String" mode="IN"
 optional="false"/>
 </service>

In this simple example it is going to be the job of learningCallingServiceOne
to prepare the parameter map and pass in the planetId parameter to
learningCallingServiceTwo. The second service will determine if the input is
EARTH, and return an error if not.

In the class org.ofbiz.learning.learning.LearningEvents, add the static
method that is invoked by learningCallingServiceOne:

 public static Map callingServiceOne(DispatchContext dctx, Map
context){

 LocalDispatcher dispatcher = dctx.getDispatcher();
 Map resultMap = null;
 String firstName = (String)context.get("firstName");
 String lastName = (String)context.get("lastName");
 String planetId = (String)context.get("planetId");
 GenericValue userLogin = (GenericValue)context.get("userLogin");
 Locale locale = (Locale)context.get("locale");

 Map serviceTwoCtx = UtilMisc.toMap("planetId", planetId,
"userLogin", userLogin, "locale", locale);
 try{
 resultMap = dispatcher.runSync("learningCallingServiceTwo",
serviceTwoCtx);
 }catch(GenericServiceException e){
 Debug.logError(e, module);
 }

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

Chapter 10

[301]

 resultMap.put("fullName", firstName + " " + lastName);

 return resultMap;
 }

and also the method invoked by learningServiceTwo:

 public static Map callingServiceTwo(DispatchContext dctx, Map
 context){
 String planetId = (String)context.get("planetId");
 Map resultMap = null;
 if(planetId.equals("EARTH")){
 resultMap = ServiceUtil.returnSuccess("This planet is
 Earth");
 }else{
 resultMap = ServiceUtil.returnError("This planet is NOT
 Earth");
 }
 return resultMap;
 }

To LearningScreens.xmladd:

<screen name="TestCallingServices">
 <section>
 <actions><set field="formTarget" value="TestCallingServices"/></
actions>
 <widgets>
 <include-screen name="TestFirstService"/>
 </widgets>
 </section>
</screen>

Finally add the request-map to the controller.xml fi le:

<request-map uri="TestCallingServices">
 <security auth="false" https="false"/>
 <event type="service" invoke="learningCallingServiceOne"/>
 <response name="success" type="view" value="TestCallingServices"/>
 <response name="error" type="view" value="TestCallingServices"/>
</request-map>

and also the view-map:

<view-map name="TestCallingServices" type="screen"
 page="component://learning/widget/learning/
 LearningScreens.xml#TestCallingServices"/>

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

The Service Engine

[302]

Stop, rebuild, and restart, then fi re an OFBiz http request TestCallingServices
to webapp learning. Do not be alarmed if straight away you see error messages
informing us that the required parameters are missing. By sending this request we
have effectively called our service with none of our compulsory parameters present.

Enter your name and in the Planet Id, enter EARTH. You should see:

Try entering MARS as the Planet Id.

Notice how in the Java code for the static method callingServiceOne the line

resultMap = dispatcher.runSync("learningCallingServiceTwo",
 serviceTwoCtx);

is wrapped in a try/catch block. Similar to how the methods on
the GenericDelegator object that accessed the database threw a
GenericEntityException, methods on our dispatcher object throw a
GenericServiceException which must be handled.

There are three main ways of invoking a service:

 runSync—which runs a service synchronously and returns the result
as a map.

•

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

Chapter 10

[303]

runSyncIgnore—which runs a service synchronously and ignores the result.
Nothing is passed back.
runAsync—which runs a service asynchronously. Again, nothing is
passed back.

The difference between synchronously and asynchronously run services is discussed
in more detail in the section called Synchronous and Asynchronous Services.

Implementing Interfaces
Op en up the services.xml fi le in ${component:learning}\servicedef and
take a look at the service defi nitions for both learningFirstService and
learningCallingServiceOne.

Do you notice that the <attribute> elements (parameters) are the same? To
cut down on the duplication of XML code, services with similar parameters can
implement an interface.

As the fi rst service element in this fi le enter the following:

<service name="learningInterface" engine="interface">
 <description>Interface to describe base parameters for Learning
 Services</description>
 <attribute name="firstName" type="String" mode="IN"
 optional="false"/>
 <attribute name="lastName" type="String" mode="IN"
 optional="false"/>
 <attribute name="planetId" type="String" mode="IN"
 optional="false"/>
 <attribute name="fullName" type="String" mode="OUT"
 optional="true"/>
</service>

Notice that the engine attribute is set to interface.

Replace all of the <attribute> elements in the learningFirstService and
learningCallingServiceOne service defi nitions with:

<implements service="learningInterface"/>

So the service defi nition for learningServiceOne becomes:

 <service name="learningCallingServiceOne" engine="java"
 location="org.ofbiz.learning.learning.LearningServices"
 invoke="callingServiceOne">

•

•

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

The Service Engine

[304]

 <description>First Service Called From The Controller
 </description>
 <implements service="learningInterface"/>
 </service>

Restart OFBiz and then fi re an OFBiz http request TestCallingServices to webapp
learning. Nothing should have changed—the services should run exactly as before,
however our code is now somewhat tidier.

O verriding Implemented Attributes
It may be the case that the interface specifi es an attribute as optional="false",
however, our service does not need this parameter. We can simply override the
interface and add the <attribute> element with whatever settings we wish.

For example, if we wish to make the planetId optional in the above example, the
<implements> element could remain, but a new <attribute> element would be
added like this:

<service name="learningCallingServiceOne" engine="java"
 location="org.ofbiz.learning.learning.LearningServices"
 invoke="callingServiceOne">
 <description>First Service Called From The Controller
 </description>
 <implements service="learningInterface"/>
 <attribute name="planetId" type="String" mode="IN"
 optional="false"/>
</service>

Synchronous and Asynchronous
Services.
Th e service engine allows us to invoke services synchronously or asynchronously. A
synchronous service will be invoked in the same thread, and the thread will "wait"
for the invoked service to complete before continuing. The calling service can
obtain information from the synchronously run service, meaning its OUT parameters
are accessible.

Asynchronous services run in a separate thread and the current thread will continue
without waiting. The invoked service will effectively start to run in parallel to the
service or event from which it was called. The current thread can therefore gain no
information from a service that is run asynchronously. An error that occurs in an
asynchronous service will not cause a failure or error in the service or event from
which it is called.

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

Chapter 10

[305]

A good example of an asynchronously called service is the sendOrderConfirmation
service that creates and sends an order confi rmation email. Once a customer has
placed an order, there is no need to wait while the mail service is called and the mail
sent. The mail server may be down, or busy, which may result in an error that would
otherwise stop our customer form placing the order. It is much more preferable
to allow the customer to continue to the Order Confi rmation page and have our
business receive the valuable order. By calling this service asynchronously, there is
no delay to the customer in the checkout process, and while we log and fi x any errors
with the mail server, we still take the order.

Behind the scenes, an asynchronous service is actually added to the Job Scheduler. It
is the Job Scheduler's task to invoke services that are waiting in the queue.

Using the Job Scheduler
As ynchronous services are added to the Job Scheduler automatically. However, we
can see which services are waiting to run and which have already been invoked
through the Webtools console. We can even schedule services to run once only or
recur as often as we like.

Open up the Webtools console at https://localhost:8443/webtools/control/
main and take a look under the Service Engine Tools heading. Select Job List
to view a full list of jobs. Jobs without a Start Date/Time have not started yet.
Those with an End Date/Time have completed. The Run Time is the time they
are scheduled to run. All of the outstanding jobs in this list were added to the
JobSandbox Entity when the initial seed data load was performed, along with the
RecurrenceRule (also an Entity) information specifying how often they should be
run. They are all maintenance jobs that are performed "offl ine".

The Pool these jobs are run from by default is set to pool. In an architecture where
there may be multiple OFBiz instances connecting to the same database, this can be
important. One OFBiz instance can be dedicated to performing certain jobs, and even
though job schedulers may be running on each instance, this setting can be changed
so we know only one of our instances will run this job.

Th e Service Engine settings can be confi gured in framework\service\config\
serviceengine.xml. By changing both the send-to-pool attribute and the name
attribute on the <run-from-pool> element, we can ensure that only jobs created on
an OFBiz instance are run by this OFBiz instance.

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

The Service Engine

[306]

Cl ick on the Schedule Job button and in the Service fi eld enter
learningCallingServiceOne, leave the Pool as pool and enter today's date/time
by selecting the calendar icon and clicking on today's date. We will need to add 5
minutes onto this once it appears in the box. In the below example the Date appeared
as 2008-06-18 14:11:24.265. This job is only going to be scheduled to run once,
although we could specify any recurrence information we wish.

Select Submit and notice that scheduler is already aware of the parameters that can
(or must, in this case) be entered. This information has been taken from the service
defi nition in our services.xml fi le.

Press Submit to schedule the job and fi nd the entry in the list. This list is ordered
by Run Time so it may not be the fi rst. Recurring maintenance jobs are imported
in the seed data and are scheduled to run overnight. These will more than likely be
above the job we have just scheduled since their run-time is further in the future. The
entered parameters are converted to a map and then serialized to the database. They
are then fed to the service at run time.

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

Chapter 10

[307]

Quickly Running a Service
Using the Webtools console it is also possible to run a service synchronously. This is
quicker than going through the scheduler should you need to test a service or debug
through a service. Select the Run Service button from the menu and enter the same
service name, submit then enter the same parameters again. This time the service is
run straight away and the OUT parameters and messages are passed back to
the screen:

Naming a Service and the Service
Reference
Servic e names must be unique throughout the entire application. Because we do
not need to specify a location when we invoke a service, if service names were
duplicated we can not guarantee that the service we want to invoke is the one that is
actually invoked. OFBiz comes complete with a full service reference, which is in fact
a dictionary of services that we can use to check if a service exists with the name we
are about to choose, or even if there is a service already written that we are about
to duplicate.

From https://localhost:8443/webtools/control/main select the Service
Reference and select "l" for learning. Here we can see all of our learning services,
what engine they use and what method they invoke. By selecting the service
learningCallingServiceOne, we can obtain complete information about this
service as was defi ned in the service defi nition fi le services.xml. It even includes
information about the parameters that are passed in and out automatically.

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

The Service Engine

[308]

Careful selection of intuitive service names and use of the description tags in the
service defi nition fi les are good practice since this allows other developers to reuse
services that already exists, rather than duplicate work unnecessarily.

Event Condition Actions (ECA)
ECA ref ers to the structure of rules of a process. The Event is the trigger or the reason
why the rule is being invoked. The condition is a check to see if we should continue
and invoke the action, and the action is the fi nal resulting change or modifi cation. A
real life example of an ECA could be "If you are leaving the house, check to see if it
is raining. If so, fetch an umbrella". In this case the event is "leaving the house". The
condition is "if it is raining" and the action is "fetch an umbrella".

There a re two types of ECA rules in OFBiz: Service Event Condition Actions
(SECAs) and Entity Event Condition Actions (EECAs).

Service Event Condition Actions (SECAs)
For SEC As the trigger (Event) is a service being invoked. A condition could be if a
parameter equalled something (conditions are optional), and the action is to invoke
another service.

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

Chapter 10

[309]

SECAs are defi ned in the same directory as service defi nitions (servicedef). Inside
fi les named secas.xml

Take a look at the existing SECAs in applications\order\servicedef\secas.xml
and we can see a simple ECA:

 <eca service="changeOrderStatus" event="commit"
 run-on-error="false">
 <condition field-name="statusId" operator="equals"
 value="ORDER_CANCELLED"/>
 <action service="releaseOrderPayments" mode="sync"/>
 </eca>

When the changeOrderStatus transaction is just about to be committed, a lookup is
performed by the framework to see if there are any ECAs for this event. If there are,
and the parameter statusId is ORDER_CANCELLED then the releaseOrderPayments
service is run synchronously.

Most commonly, SECAs are triggered on commit or return; however, it is possible
for the event to be in any of the following stages in the service's lifecycle:

auth—Before Authentication
in-validate—Before IN parameter validation
out-validate—Before OUT parameter validation
invoke—Before service invocation
commit—Just before the transaction is committed
return—Before the service returns
global-commit

global-rollback

The variables global-commit and global-rollback are a little bit different. If the
service is part of a transaction, they will only run after a rollback or between the two
phases (JTA implementation) of a commit.

There a re also two specifi c attributes whose values are false by default:

run-on-failure

run-on-error

You can set them to true if you want the SECA to run in spite of a failure or error.
A failure is the same thing as an error, except it doesn't represent a case where a
rollback is required.

•

•

•

•

•

•

•

•

•

•

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

The Service Engine

[310]

It should be noted that parameters passed into the trigger service are available, if
need be, to the action service. The trigger services OUT parameters are also available
to the action service.

Before using SECAs in a component, the component must be informed of the
location of the ECA service-resources:

<service-resource type="eca" loader="main"
 location="servicedef/secas.xml"/>

This line must be added under the existing <service-resource> elements in the
component's ofbiz-component.xml fi le.

Entity Event Condition Actions (EECAs)
For EEC As, the event is an operation on an entity and the action is a service
being invoked.

EECAs are defi ned in the same directory as entity defi nitions (entitydef): inside
fi les named eecas.xml.

They are used when it may not necessarily be a service that has initiated an operation
on the entity, or you may wish that no matter what service operates on this entity, a
certain course of action to be taken.

Open the eecas.xml fi le in the applications\product\entitydef directory and
take a look at the fi rst <eca> element:

 <eca entity="Product" operation="create-store" event="return">
 <condition field-name="autoCreateKeywords"
 operator="not-equals" value="N"/>
 <action service="indexProductKeywords" mode="sync"
 value-attr="productInstance"/>
 </eca>

This ECA ensures that once any creation or update operation on a Product
record has been committed, so long as the autoCreateKeywords fi eld of this
record is not N, then the indexProductKeywords service will be automatically
invoked synchronously.

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

Chapter 10

[311]

The operation can be any of the following self-explanatory operations:

create

store

remove

find

create-store (create or store/update)
create-remove

store-remove

create-store-remove

any

The return event is by far the most commonly used event in an EECA. But there are
also validate, run, cache-check,cache-put, and cache-clear events. There is also
the run-on-error attribute.

Before using EECAs in a component, the component must be informed of the
location of the eca entity-resource:

<entity-resource type="eca" loader="main"
 location="entitydef/eecas.xml"/>

must be added under the existing <entity-resource> elements in the component's
ofbiz-component.xml fi le.

ECAs c an often catch people out! Since there is no apparent fl ow from
the trigger to the service in the code they can be diffi cult to debug. When
debugging always keep an eye on the logs. When an ECA is triggered, an
entry is placed into the logs to inform us of the trigger and the action.

Summary
This brings us to the end of our investigation into the OFBiz Service Engine. We have
discovered how useful the Service Oriented Architecture in OFBiz can be and we
have learnt how the use of some of the built in Service Engine tools, like the Service
Reference, can help us when we are creating new services.

•

•

•

•

•

•

•

•

•

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

The Service Engine

[312]

In this chapter we have looked at:

Defi ning and creating services
Service parameters
Special unchecked (unmatched) IN/OUT parameters
Security-related programming
Calling services from code (using dispatcher).
IN/OUT parameter mismatch when calling services
Sending feedback; standard return codes success, error and fail.
Implementing Service Interfaces
Synchronous and asynchronous services
Using the Service Engine tools
ECAs: Event Condition Actions

The Service Engine is highly developed with respect to permissions and access
control. In the next chapter we will be studying OFBiz Permissions and the
Service Engine.

•

•

•

•

•

•

•

•

•

•

•

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

For More Information:
www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book

Where to buy this book
You can buy Apache OFBiz Development from the Packt Publishing website:
http://www.packtpub.com/apache-ofbiz-development-beginners-
tutorial/book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

http://www.packtpub.com/apache-ofbiz-development-beginners-tutorial/book
http://www.packtpub.com/Shippingpolicy

